References

- BARKHATOV, V. (1942). Acta Physicochim. U.R.S.S. 16, 123.
- BARKHATOV, V. & ZHDANOV, H. (1942). Acta Physicochim. U.R.S.S. 16, 43.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CURRY, N. A. & RUNCIMAN, W. A. (1959). Acta Cryst. 12, 674.
- FRANK, F. C. (1952). Advanc. Phys. 1, 91.
- GOTTFRIED, C. & NAGELSCHMIDT, J. G. (1930). Z. Kristallogr. 73, 357.
- International Tables for X-ray Crystallography (1965). 2nd Ed. Vol. I. Birmingham: Kynoch Press.

- KOHN, J. A. & TOWNES, W. D. (1961). Acta Cryst. 14, 617. LOURENS, J. A. J. & REYNHARDT, E. C. (1971a). Phys. stat. sol. (b). In the press.
- LOURENS, J. A. J. & REYNHARDT, E. C. (1971b). J. Phys. Soc. Japan. In the press.
- MONFORT, F. (1942). Bull. Soc. Roy. Sci. Liège, 11, 567.
- OKAYA, Y. & PEPINSKY, R. (1956). Abstract of paper (1-6) presented at meeting of Amer. Crystallographic Assoc., French Lick, Indiana.
- PAULING, L., SPRINGALL, H. D. & PALMER, K. J. (1939). J. Amer. Chem. Soc. 61, 927.
- RENNIE, A. E. & NIELSEN, S. (1959). Brit. J. Appl. Phys. 10, 429.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, p. 393. New York: Macmillan.
- SUGAWARA, T. (1959). J. Phys. Soc. Japan, 14, 858.

Acta Cryst. (1972). B28, 529

Die Kristallstrukturen von Hexamminchrom(III)-Hexafluoromanganat(III) und Hexamminchrom(III)-Hexafluoroferrat(III)

VON K. WIEGHARDT UND J. WEISS

Anorganisch-Chemisches Institut der Universität Heidelberg, 69 Heidelberg. Im Neuenheimer Feld 7, Deutschland (B.R.D.)

(Eingegangen am 16. März 1971)

The crystal structures of $[Cr(NH_3)_6]MnF_6$ and of $[Cr(NH_3)_6]FeF_6$ have been determined from threedimensional X-ray data collected by counter methods. The structures have been refined by full-matrix least-squares techniques to final conventional *R*-values of 3.0% for 294 independent reflexions for $[Cr(NH_3)_6]MnF_6$ and of 3.4% for 648 independent reflexions for $[Cr(NH_3)_6]FeF_6$. The compounds crystallize in the cubic space group *Pa3* (T_h^6), with four formula units in a cell (*a*=10.059(3) Å for $[Cr(NH_3)_6]MnF_6$ and 10.079(3) Å for $[Cr(NH_3)_6]FeF_6$). A dynamical Jahn-Teller effect for the MnF $_6^3$ ion is discussed. Evidence for hydrogen bonding in complex hexafluorides containing the $[Cr(NH_3)_6]^{3+}$ ion is given.

Einleitung

Röntgenographische und infrarot-spektroskopische Untersuchungen an den Verbindungen K_3MnF_6 , K_2NaMnF_6 und Cs_2KMnF_6 ergaben D_{4h} -Symmetrie der MnF $_6^3$ -Anionen. Sechs Fluoratome umgeben Mn³⁺ in Form eines gestreckten Oktaeders (Peacock, 1957; Knox, 1963; Wieghardt & Siebert, 1971; Schneider & Hoppe, 1970). Diese statische Verzerrung des Komplexoktaeders wird als eine Folge des Jahn-Teller Theorems (Jahn & Teller, 1937) gedeutet.

Die kürzlich dargestellten Salze $[M(NH_3)_6]MnF_6$ (M=Cr, Co, Rh) kristallisieren in der kubischen Raumgruppe T_h^6 -Pa3. Die Lagesymmetrie der MnF_6^3-Anionen ist C_{3i} (S₆). Das bedeutet aber, dass die Symmetrie der MnF_6^3-Ionen in diesen Salzen nicht D_{4h} sein kann (Wieghardt & Siebert, 1971a). Da sich auch die Infrarot-Spektren wesentlich von denen der K₃MnF_6- und K₂NaMnF_6-Salze unterscheiden (s.unten), wurde die Kristallstruktur von [Cr(NH₃)₆]MnF₆ bestimmt. Eine zweite Kristallstrukturanalyse wurde von dem isotypen Salz [Cr(NH₃)₆]FeF₆ durchgeführt, da das Fe³⁺-Ion keinen Jahn-Teller Effekt zeigt. Es eignet sich daher gut zu einem Vergleich mit [Cr(NH₃)₆]MnF₆.

Experimentelles

 $[Cr(NH_3)_6]MnF_6$ und $[Cr(NH_3)_6]FeF_6$ wurden nach einer von Wieghardt & Siebert (1971*a*, *b*) beschriebenen Methode dargestellt. Die Salze kristallisieren in kleinen, gut ausgebildeten Würfeln, die optisch isotrop sind. Drehkristall- und Weissenberg-Aufnahmen ergaben kubische Symmetrie. Aufgrund der systematischen Auslöschungen 0kl für k = 2n + 1, h0l für l = 2n + 1, hk0 für h = 2n + 1 und der gleichen Intensität aller Reflexe mit cyclisch vertauschbaren Indizes kommt nur die Raumgruppe T_6^6 -Pa3 in Frage.

Die Gitterkonstanten wurden aus diffraktometrisch bestimmten Winkeln θ von jeweils 2 Reflexen h00, 0k0, 00/ berechnet. In Tabelle 1 sind die Kristalldaten zusammengestellt. Die Intensitäten wurden mit einem Automatischen Einkristalldiffraktometer (Siemens) vermessen (θ -2 θ Abtastung, 5-Punktmessung). Für [Cr(NH₃)₆]MnF₆ wurden keine Reflexe vermessen mit $2\theta > 60^{\circ}$ und für [Cr(NH₃)₆]FeF₆ keine mit $2\theta > 80^{\circ}$. Insgesamt wurden die Intensitäten von 506 unabhängigen Reflexen für [Cr(NH₃)₆]MnF₆ und 1076 für [Cr(NH₃)₆]FeF₆ gemessen, wovon 212 bzw. 428 als nicht beobachtet eingestuft wurden. Dies geschah nach folgendem Kriterium (Troughton, 1971): $I_{net} < Q_1$. $\sigma(I_{net})$, wobei $I_{net} = \frac{1}{2}[(I_1 + I_3 + I_5) - (I_2 + I_4)]$ und $\sigma(I_{net}) = \frac{1}{2} / (I_1 + I_2 + I_3 + I_4 + I_5)$ und $Q_1 = 2,58$ ist. Die Intensitäten der drei äquivalenten Reflexe *hkl*, *klh*, *lhk* wurden einzeln vermessen und gemittelt.

Die so erhaltenen Intensitäten wurden in der üblichen Weise korrigiert. Auf eine Absorptionskorrektur konnte verzichtet werden, da der lineare Absorptionskoeffizient und die Abmessungen der verwendeten Einkristalle klein waren. Korrekturen der Extinktion wurden ebenfalls nicht vorgenommen.

Strukturbestimmung und Verfeinerung

Die Metallatome (Cr, Mn bzw. Cr, Fe) liegen auf den beiden speziellen, vierzähligen Punktlagen der Raumgruppe T_h^6 -Pa3. Die ungefähren Positionen der Stickstoff- und Fluoratome wurden mit Hilfe der 'trial and error' Methode bestimmt.

Da die Metallatome ein NaCl - Gitter bilden und

sich die Elektronenzahlen von Cr^{3+} und Mn^{3+} oder Cr^{3+} und Fe³⁺ nur um ein bzw. zwei Elektronen unterscheiden, tragen sie voll nur zu den Intensitäten der Reflexe mit h, k, l=2n bei, dagegen nur sehr wenig zu den Intensitäten der Reflexe mit h, k, l=2n+1 und nichts zu allen anderen. Daraus folgt, dass die Intensitäten etwa 80% aller beobachteten Reflexe nur Beiträge eines unabhängigen Stickstoff-, eines unabhängigen Fluor- und dreier unabhängiger Wasserstoffatome in der Elementarzelle enthalten.

Nach Verfeinerung der Atomkoordinaten des Stickstoff- und Fluoratoms (es ergaben sich R_1 -Werte von 0,12 für [Cr(NH₃)₆]MnF₆ und 0,13 für [Cr(NH₃)₆]FeF₆) wurde eine dieidimensionale Fouriersynthese berechnet. Darin waren die Positionen der drei Wasserstoffatome als gut aufgelöste Maxima zu erkennen.

Anschliessende least-squares Verfeinerung mit der vollständigen Matrix mit individuellen, isotropen Temperaturfaktoren, bei der auch die Parameter der Wasserstoffatome variiert wurden, führte nach sechs Zyklen zu R_1 -Werten $(R_1 = \sum ||F_o| - |F_c|| / \sum |F_o|)$ von 0,034 für [Cr(NH₃)₆]MnF₆ und 0,045 für [Cr(NH₃)₆]FeF₆. Die hierbei und in den folgenden Zyklen minimalisierte Grösse ist $R = \sum w(|F_o| - |F_c|)^2$. Sämtliche Strukturamplituden hatten Einheitsgewicht.

Dann wurden je drei Zyklen gerechnet, bei denen die anisotropen Temperaturfaktoren der Stickstoff- und Fluoartome eingeführt und nur die Koordinaten dieser Atome variiert wurden. Danach betrugen die endgül-

Tabelle 1. Kristalldaten

	$[Cr(NH_3)_6]MnF_6$	[Cr(NH ₃) ₆]FeF ₆
Raumgruppe	Pa3	Pa3
Gitterkonstante a	10,059±0,003	10,079 ± 0,003 Å
Formeleinheiten in der Elementarzelle	4	4
Qbeob.	2,10	2,06 g.cm ⁻³
Linearer Absorptionskoeff. μ	24,4	25,7 cm ⁻¹
Kantenlänge der verwendeten		
Einkristalle (Würfel)	0,16	0,32 mm
Strahlung	Μο <i>Κ</i> α λ	=0,7107 Å

Tabelle 2. Atomkoordinaten und thermische Parameter der Verbindungen $[Cr(NH_3)_6]MnF_6$ und $[Cr(NH_3)_6]FeF_6$

Atomkoordinaten sind mit 104 multipliziert.

Der Temperaturfaktor T mit den Grössen β_{ij} lautet:

$$T = \exp\left[-\left(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right)\right]$$

Sämtliche β_{ij} sind mit 10⁵ multipliziert.

	x	у	Z	β_{11}	β_{22}	β ₃₃	β_{12}	β_{13}	β_{23}	B [Å2]
Cr	5000	5000	5000							1,33 (3)
Mn	0	0	0							1,43 (3)
F	1138 (2)	1403 (2)	9378 (2)	705 (25)	698 (25)	689 (26)	- 54 (21)	-30 (20)	- 6 (21)	
Ν	3707 (3)	1415 (3)	742 (3)	495 (30)	454 (30)	645 (33)	21 (25)	31 (26)	- 74 (26)	
H(1)	1540 (59)	1658 (63)	3634 (58)							3,0 (1,2)
H(2)	1419 (47)	424 (44)	2877 (47)							1,2 (1,0)
H(3)	2149 (51)	524 (50)	3891 (47)							1,5 (1,1)
Cr	5000	5000	5000							0,97 (1)
Fe	0	0	0							1,03 (1)
F	1138 (1)	1408 (1)	9375 (1)	545 (13)	478 (12)	549 (13)	-170 (10)	10 (10)	68 (10)	
N	3707 (2)	1418 (2)	741 (2)	365 (14)	375 (14)	568 (16)	34 (11)	31 (11)	- 52 (12)	
H(1)	1559 (44)	1687 (45)	3631 (43)							1,2 (1,0)
H(2)	1389 (48)	546 (47)	2862 (48)							1,4 (1,0)
H(3)	2180 (50)	520 (49)	3820 (47)							1,6 (1,1)

tigen R_1 -Werte für alle 294 Reflexe von [Cr(NH₃)₆MnF₆ 0,030 und für alle 648 Reflexe von [Cr(NH₃)₆]FeF₆ 0,034.

Die verwendeten Atomfaktoren für Cr^{3+} , Fe^{3+} , Mn^{3+} , F^- , N, H sind den *International Tables for X-ray* Crystallography (1962) entnommen.

Die endgültigen Koordinaten und Temperaturfaktoren der Atome sind in Tabelle 2 zusammengestellt, Abstände und Winkel in Tabelle 3 und 4. Tabelle 5 gibt die beobachteten und berechneten Strukturamplituden von $[Cr(NH_3)_6]MnF_6$ und Tabelle 6 die von $[Cr(NH_3)_6]FeF_6$ an.

Tabelle 3. Abstände

	[Cr(NH ₃) ₆]MnF ₆	[Cr(NH ₃) ₆]FeF ₆
M-F	1,922 (2) Å	1,931 (1) Å
Cr-N	2,067 (3)	2,073 (2)
N –H(1)	0,93 (6)	0,97 (5)
N - H(2)	0,89 (5)	0,88 (5)
N - H(3)	0.79 (5)	0.81(5)

Intermolekulare N-F Abstände

2,926 (4)	2,932 (2)
2,964 (4)	2,965 (2)
3,009 (4)	3,009 (2)
3,119 (4)	3,126 (2)
3,288 (4)	3,289 (2)
3,342 (4)	3,348 (2)

Tabelle 4. Winkel

	$[Cr(NH_3)_6]MnF_6$	$[Cr(NH_3)_6FeF_6]$
F	89,8 (2)°	89,8 (2)°
	90,2	90,2
NCrN	87,6 (2)	87,6 (2)
	92,4	92,4
Cr - N - H(1)	120 (2)	120 (1)
Cr N H(2)	118 (2)	121 (1)
Cr - N - H(3)	113 (2)	118 (1)
H(1)-N-H(2)	106 (4)	99 (3)
H(1) - N - H(3)	100 (5)	98 (4)
H(2)-N-H(3)	97 (5)	96 (3)
$F \cdots H(1) - N$	148 (2)	147 (2)
$F \cdots H(2) - N$	170 (2)	159 (2)
F · · · H(3)−N	142 (2)	145 (2)

Die Rechnungen wurden durchgeführt auf einer Siemens 2002 im Astronomischen Recheninstitut der Universität Heidelberg, die Verfeinerung mit dem ORFLS-Programm von Busing, Martin & Levy (1962) auf einer IBM 7094 im Deutschen Rechenzentrum in Darmstadt.

Diskussion der Strukturen

Die Salze $[Cr(NH_3)_6]MnF_6$ und $[Cr(NH_3)_6]FeF_6$ enthalten die diskreten Komplexionen $[Cr(NH_3)_6]^{3+}$ und MnF_6^{3-} bzw. FeF_6^{3-} , die in einem NaCl-Gitter angeordnet sind. Dieser Strukturtyp wurde auch für $[Co(NH_3)_6]TlCl_6$ und $[Co(NH_3)_6]TlBr_6$ beobachtet (Watanabe, Atoji & Okazaki, 1950). Jede NH₃-Gruppe ist von sechs Fluoratomen umgeben und jedes Fluoratom von sechs NH₃-Gruppen. Fig. 1 zeigt $\frac{1}{8}$ der Elementarzelle.

Tabelle 5. Beobachtete und berechnete Strukturfaktoren von [Cr(NH₃)₆]MnF₆

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			 a 3 42 40 b 5 5 c 5 4 5 c 5 4 5 c 5 4 5 c 5 4 5
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+ 54 - 22 + 1 + 57 - 23 + 276 - 277 + 1 + 57 - 23 + 276 - 277 + 1 + 57 - 23 + 55 + 4 h = 7 + 55 + 4 h = 7 + 55 + 5 + 5 + 5 + 5 + 56 + 71 + 5 + 2 + 54 + 5 + 56 + 71 + 5 + 2 + 54 + 5 + 56 + 71 + 5 + 2 + 54 + 5 + 56 + 71 + 5 + 5 + 5 + 5 + 56 + 71 + 5 + 5 + 5 + 5 + 56 + 71 + 5 + 5 + 5 + 5 + 5 + 56 + 71 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +	
		2 213 23(1 7 € 71 67 50 45(8 € 63 47 5 54 4(9 2 4 4 4 5 63 577 2 1 68 49 5 63 577 2 1 68 49 5 65 577 2 1 68 49 5 65 555 5 5 6 48 49 7 2 75 3 6 48 49 7 2 75 3 6 48 49 5 240 5 77 4 7 6 6 27 5 240 5 77 4 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	

Sechs Fluoratome umgeben die Metallatome Fe bzw. Mn in einem regelmässigen Oktaeder: alle sechs M–F Bindungslängen sind äquivalent [Mn–F: 1,922 (2) Å, Fe–F 1,931 (1) Å], die Winkel weichen geringfügig von 90° ab (in beiden Strukturen etwa um 0,2°). Diese geringe Abweichung ist aber innerhalb der Fehlergrenze und nicht signifikant. Knox & Mitchell (1961) berichten über einen kürzeren Fe–F Abstand von 1,910 (6) Å in K₂NaFeF₆, was die Autoren auf besondere Verhältnisse in diesem Gitter zurückführen.

Das Cr-N Komplexoktaeder ist in beiden Strukturen ein wenig verzerrt. Die Abweichungen von 90° betragen jeweils 2,4°. Der Cr-N Bindungsabstand

Fig. 1. Perspektivische Darstellung $\frac{1}{8}$ der Elementarzelle von [Cr(NH₃)₆]MnF₆.

wurde zu 2,067 (3) Å und 2,073 (2) Å bestimmt, also innerhalb der Fehlergrenze gleich gross für beide Strukturen. Fig. 3 zeigt eine perspektivische Zeichnung des $[Cr(NH_3)_6]^{3+}$ -Ions in $[Cr(NH_3)_6]MnF_6$ (Johnson, 1965).

Tabelle 6. Beobachtete und berechnete Strukturfaktoren von [Cr(NH₃)₆]FeF₆

к 1	7.	Fa'ki	1	F _e k 1	7, 7		Ξ.	:_	K 1	¥.	2.			
••••	h = o 2128	**** 2 5 2208 2 7	179 31 509	156 15 7 35 16 7 529 17 2	51 47 51 50 33 19	.15 8 15 9 16 4	38 34 258	22	6 6 7 5	2012 1416 2112	- 11 114 21	7 9 7 10 1 2 12		
0 4 0 6 0 8 0 10	410 949 1179 435	407 2 3 970 2 9 1170 2 11 409 2 12	264	76 18 1 254 127 ++++	30 36 h = 2 +++	1. 0 10 5 • 17 3	279 257 43	291	0 9 0 10 0 11 0 12	55 315	, - , - , - , - , - , - , - , - , - , -	2 14	2 1. 4. 4.4	
0 12 0 14 0 16	376 587 402	370 2 13 585 2 16 411 3 2	77 32 130	75 2 2 33 4 164 2 5	1494 1473 1429 1415 150 158	10 5 17 5	61 34	55 51	0 1j 6 14 0 10		44 27 27	: 10 : 11 : 3 12		;;;;
2 1 2 2 3	102 1463 103	111 3 4 1411 3 5 115 3 6	477	407 2 2 8	37 35 37 212 37 212	1 2 16	h = 30	2	7 7 7	71 	- 1 - 40	2 Q 9 5 9 5	27 40 40	
2222	335 1126 1122	269 3 7 337 3 8 1140 3 9 1161 3 11	115 233 110	116 2 10 243 2 12 110 2 14 69 2 1-	639 630 516 522 395 400	35	174 210 350	105 196 335	2 9 2 11 2 15 2 15	401	6. 61 50	97 98 91 91	1	
2 9 2 10 2 12 2 14	77 716 427	85 3 12 727 3 14 426 3 16	93 2	68 2 18 53 3 3 50 3 4	229 237 1014 991 233 235	3 °0 3 14 3 14	112 20 34	15 15	5	711 737 50	721	10 10 10 12 10 14	329	33 - 4 - 4
2 15 2 16 2 17	41 325 41	42 4 3 330 4 4 48 j4 5	313 77 367	95 3 5 303 3 6 77 3 7 366 3 3	75 76 57 76 49 31 33 89	: 4 5 4 8 4 11	145 195 54	134 140 50	2 12 2 13 8 14	277 232		11 11 1	20 391 242	5125
2 18 4 1 4 2 4 3	237 63 1109 95	245 4 7 74 4 8 1088 4 9 110 4 10	55 37 100 31	51 3 9 44 3 10 92 3 11 33 3 12	34 33 10.1 110 115 116 51 36	4 17 4 14 4 15 5 5	33 45 3.	52 4 35	2 15 9 5 9 7	32 155 31 32	21 138 17 33	12 11 12 12 13 3 13 7	202 13 40	1.2.2.1
4 5 6 7	1853 164 1051 159	1917 4 11 104 4 13 1054 4 14 158 4 15	67 45 38	c4 3 13 44 3 14 43 3 17	132 109 53 55 56 51	5507	1:4 310 74	303	9 9 9 10 9 11 9 15	35	9343	13 11 14 3 14 10	295 231	4 192 194
4 8 4 9 4 10	766 127 874	802 5 2 140 5 3 888 5 4	328 174 408	325 4 4 170 4 5 419 4 0	1+77 1472 40 36 851 831	5 9 5 10 5 11	51 35 175 55	~3 ~1 120 £9	9 14 4 15 10 5	45	45	••••	h = 7	••••
4 12 4 13 4 14	509 99 195	515 15 6 98 5 8 200 15 9	130 495 95	119 4 8 505 4 10 95 4 12 50 4 13	674 (54 734 723 502 505	5 12 5 14 5 16	102 30 43	105	10 0 10 10 10 12	51 548 511	570 57 350 313	1 7 2 11 3 4 10	27 44 25 2	10
4 16 4 17 6 1	252 36 106 1320	254 5 10 39 5 11 97 5 14	262	201 4 14 35 4 16 37 5 3	294 302 288 297 89 30	¢ 6 5 7	75 167 349		10 13 10 14 11 5	e1 271 34	54 192 41	578	130	140
634	115 1359 167	116 6 3 1360 6 4 156 6 5	117 106 203	113 5 5 104 5 6 208 5 7	36 27 76 72 109 109	6 10 6 11 6 12	25 119 45	01 21 114 41	11 15 12 1 12 2	509 500	32	7 11 7 1. 6 13	15	2
6 7 6 8 6 10	154 367 512	168 6 7 367 6 8 505 6 11	217 54 48	50 : 5 11 316 5 12 56 5 15 43 5 14	133 129 33 34 39 35 55 52	6 16 7 5 7 3	44 105 53	42 60 49	12 11 12 12 12 12	202 214 70	29 29 292	9 5	29 - 29 - 40	13 13 42 57
6 11 6 12 6 13 6 14	78 528 61 321	72 6 12 529 6 16 53 6 17 322 7 2	51 40 40 351	48 5 15 42 6 4 41 6 5	71 67 972 950 97 92	7 11 7 12 7 15	89 41 40	93 45 32	13 9 14 0 14 8 14 10	50 300 30	47	9 12	54 32 34	59 27 26
6 16 8 1 8 2	265 148 959	272 7 3 157 7 4 956 7 5	174	177 6 6 128 5 9	627 679 45 42 563 563	2 10 2 4 3 5	12 84 92	80	15 5	3: 254	39 264	11 5	33 =6	22 61
8 3 4 5 6	127 777 96	124 7 6 273 7 8 104 7 10	187 122 82	191 6 12 119 6 14 76 0 16	409 406 310 330 280 290	8 9 8 11 8 13	80 34 39	74 34 30	:	•- h ₂ ⁼	••••	11 11 11 12 12 9 13 7	5455	50 43 30
8 7 8 8 8 9	36 444 127	26 7 12 435 7 16 121 8 2	75 38 61	75 7 4 37 7 6 61 7 7	25 21 61 to 147 149	8 15 9 4 9 0	40 130 135	31 138 137	3 14 4 10 4 14	34 30 39	1.2.2	15 6 •••• 1	37 3 = 5	3: •••
8 12 8 13 8 1•	448 65 439	445 8 5 70 8 7 441 8 8	79 89 55 45	84 7 9 84 7 10 55 7 11 44 7 13	5-5-50 30-34 39-30 133-134	9 9 9 9 10 9 12	57 59 112 61	57 104 54	5 5 5 10 5 12	200 22 153 29	251 15 161 24	1 15	37 23 30	20
8 15 10 2 10 4 10 6	227 510 683 720	239 8 9 501 8 12 686 8 15 724 8 16	58 33 37 42	54 S 3 30 8 4 34 S 5 36 S 6	50 55 522 550 33 30	9 13 10 4 10 5	30 69 41	17 52 40	6 0 9 7 9 11	40 167 110	44 11. 110	2 10 8 5 7 10	20 209 313	25
10 7 10 8 10 9	54 550 62 386	54 9 2 550 9 3 59 9 4	53 27 207	59 8 7 20 8 8 205 9 9	36 23 677 614 36 30	10 7 10 10 10 11	140 34 14	140 31 00	< 15 7 7 7 7	(2 54 115	70 17 13	2 11 3 12 3 14 9 7	515 274 41	1:1 230 40
10 11 10 12 10 13	33 338 52	40 9 6 340 9 ? 54 9 8	244 79 61	236 2 12 79 2 14 65 8 16	340 370 344 351 242 352	11 6 11 7 11 8	4.4.4		7 10 7 12	21 51 44	10.5	9 1c 15 10 10 12	10 359 242 30	44 542 242 242
12 1 12 2 12 3	88 498 79	92 9 11 499 9 13 80 9 14	33 34 36	101 9 3 21 9 5 36 9 7 29 9 8	179 162 235 237 126 121 42 38	11 10	45 34 31 35	32 17 15	57 85 81: 92	65 42 37 27	40 40 41	10 10	33 219 32	34
12 4 12 5 12 6 12 8	566 62 424 369	570 9 15 60 10 2 430 10 5 378 10 6	32 101 110 90	23 9 9 110 9 10 103 9 11 67 9 13	127 125 56 54 42 43 56 43	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	55 77 63	30 75 55	96 97 98	145 29 54	14 23 47	15 15 5 ++++ 1	40 40	•••
12 9 12 10 12 12 14 1	55 376 204 52	59 10 7 357 10 5 275 10 11	1.93	05 10 4 .2 10 6 15 10 3	505 554 572 501 492 490	13 4 113 3 114 5 15 7	35	62 11 21	10 2 10 7 10 8	27 1e3 °o	21	4 15 5 12 7 10	49 49 51	 1.
14 2 14 3 14 4 14 14	483 41 293	457 11 3 47 11 5 316 11 6	38 33 137	3~ 10 12 39 10 14 13. 11 3	325 325 265 273 199 192	15	42	44 47		2.6.5		9 10	51 45 53	
14 6 14 8 14 9	241 276 29	248 11 5 264 11 10 23 1 12	54 72	55 11 5 55 11 6 52 11 10 53 11 11	51 53 51 53 53 59 75 3	3 7	28 28 34	••••• •e	11 0 11 3 11 12 1 6	112.0	20.72	11 10 11 11 14 3	35	
14 10 16 2 10 4 16 6	254 287 195 265	209 11 13 299 11 14 204 12 2 290 12 3	45 40 44 76	50 11 13 33 12 3 47 12 4 76 12 5	59 51 555 551 46 54	145	810 28 674 129	855 24 655	12 0 12 0 13 6 13 b		100		: = 1a	• • •
16 8 13 2	305 198	316 12 4 207 12 5 12 6	28 34 45	19 12 6 18 12 8 46 12 10	341 347 322 327 359 312	1 4 3 4 3 1 4 10	5.0	503 60 425 -	14 6 14 7 14 3	435	•••	1 10	52355	1
1 1 1 2 1 2	303	373 12 13 53 13 2	4 4 9 2	94 1 5 44 13 2 10 15 2	15 12	13	40		10 7			- 7 - 1 10 0 11 4	2973 2973	1
1 1 5 6 1	750 161 354	716 11 2 2 109 113 5 310 113 0	20 24 24	14 13 3 14 13 10 5° 13 11 14 14 4	71 91 71 0 42 14 50 342	5 5 5	307	300 15	4 1 1 17 - 7		,	••	11	
1 3 1 9 1 10	215 42 153	219 13 2 42 13 10 135 14 2	3	72:14:0 -:::::::::::::::::::::::::::::::::::	3-3-403 224-202 226-225 3-45	- :	55 1:5 87	52 ! 1-7 20	4 11 10 11 10					
1 12 1 16 2 3 2 4	40 38 947 111	40 14 3 43 14 7 942 15 2 116 15 3	101	43 15 3 41 15 4 95 15 5	41 45 41 35 51 55	1 5 13 5 14 5 14	41	5	7	le.	1.			

Der Grundzustand des Mn^{3+} -Ions im oktaedrischen Ligandenfeld ist bahnentartet (${}^{5}E_{g}$). Daher sollte – gemäss dem Jahn-Teller Theorem – das Oktaeder der sechs Fluoratome im MnF_{6}^{3-} -Anion im Sinne einer Symmetrieerniedrigung verzerrt sein.

Die Salze des Typs K_2 NaMF₆ (M = Al, Ga, Ti, Cr, Fe) kristallisieren in der kubischen Raumgruppe O_h^5 – Fm3m, die MeF₆³⁻-Ionen besitzen volle Oktaedersymmetrie (Knox & Mitchell, 1961). Dagegen kristallisiert K_2 NaMnF₆ in der tetragonalen Raumgruppe D_{4h}^{17} -F4/mmm. Das Mn³⁺ ist von sechs Fluoratomen in einem verzerrten Oktaeder (D_{4h}) umgeben, wobei vier F⁻ einen Bindungsabstand von 1,86 Å und zwei einen von 2,06 Å haben (Knox, 1963). Ganz ähnliche Verhältnisse findet man für Salze des Typs K₃MF₆ (Peacock, 1957) und Cs₂KMF₆ (Schneider & Hoppe, 1970), die ebenfalls kubisch kristallisieren, wiederum mit Ausnahme der Vertreter der Mangan(III)-Salze, die tetragonal kristallisieren. In allen diesen Fällen wird also eine statische Verzerrung des MnF₆³⁻-Octaeders beobachtet, die röntgenographisch signifikant ist. Es handelt sich dabei um einen statischen Jahn-Teller Effekt.

Die Strukturanalyse von $[Cr(NH_3)_6]MnF_6$ ergibt nun aber, dass hier die MnF_6^3 -Anionen O_h -Symmetrie besitzen. Weiterhin würde der Grundzustand des Mn^{3+} im Feld der sechs Liganden entartet bleiben (E_g) , selbst wenn man vom symmetrischen Oktaeder zur – in der Raumgruppe *Pa3* möglichen – Punktgruppe $C_{3i}(S_6)$ übergeht. Dem Jahn-Teller Theorem wäre also auch bei Vorliegen der Symmetrie C_{3i} für MnF_6^{3-} nicht Genüge getan.

Es gibt nun zwei verschiedene Möglichkeiten, dieses Ergebnis zu interpretieren:

1. Es liegt eine statistische Verteilung der statisch verzerrten MnF_6 -Oktaeder mit D_{4h} -Symmetrie im Kristall vor. Röntgenographisch wird dann die resultierende – scheinbare – Symmetrie O_h beobachtet.

2. Es liegt ein dynamischer Jahn-Teller Effekt vor, d.h. es sind drei Gleichgewichtskonfigurationen des Systems vorhanden. Jede für sich hat D_{4h} -Symmetrie. Durch einen schnellen Wechsel zwischen den Konfigurationen ('Pseudorotation') resultiert dann ebenfalls Oktaedersymmetrie (Liehr, 1961; Ballhausen, 1962).

Eine statistische Verteilung verzerrter MnF₆-Oktaeder kann aus folgenden Gründen ausgeschlossen werden. In den Infrarot-Spektren von K₃MnF₆ und K₂NaMnF₆ werden jeweils zwei (Mn–F)-Valenzschwingungen bei 579 und 399 cm⁻¹ und zwei (F–Mn–F)-Deformationsschwingungen bei 300 und 230 cm⁻¹ beobachtet, was mit der röntgenographisch festgestellten D_{4h} -Symmetrie der MnF₆^{3–}-Ionen in Einklang steht (Wieghardt & Siebert, 1971*a*). Die vergleichbaren Infrarot-Spektren von K₃FeF₆ und K₂NaFeF₆ und auch von [M(NH₃)₆]FeF₆ (M = Cr, Co, Rh) weisen nur eine (Fe–F)-Valenzschwingung und eine (F–Fe–F)-Deformationsschwingung auf, wie es für ein symmetrisches Oktaeder zu erwarten ist (Wieghardt & Siebert, 1971*b*). In den Infrarot-Spektren der Salze [M(NH₃)₆]MnF₆ werden dagegen jeweils nur eine (Mn-F)-Valenzschwingung bei 545 cm⁻¹ und zwei (F-Mn-F)-Deformationsschwingungen bei 351 und 287 cm⁻¹ beobachtet (Wieghardt & Siebert, 1971*a*). Daraus folgt, dass in den $[M(NH_3)_6]MnF_6$ -Salzen die MnF $_6^3$ -Anionen keine statische D_{4h} -Symmetrie besitzen.

Weiterhin sollte bei statistischer Verteilung verzerrter MnF₆-Oktaeder wegen des relativ grossen Unterschieds der beiden Arten von Mn–F Bindungslängen ($\Delta = 0,20$ Å) eine in Richtung der Mn–F Bindung verlängerte Elektronendichte der Fluoratome in der Fouriersynthese beobachtet werden, oder doch stark anisotrope Temperaturfaktoren der Fluoratome. Da dies nicht beobachtet wird, ist eine statistische Verteilung verzerrter MnF₆-Oktaeder auch röntgenographisch ausgeschlossen.

Das Vorliegen eines dynamischen Jahn-Teller Effekts in den Salzen des Typs $[M(NH_3)_6]MnF_6$ ist einerseits durch die Analyse der Infrarot-Spektren dieser Verbindungen bewiesen (Wieghardt & Siebert, 1971*a*), andererseits gelangt man zu dem gleichen Schluss durch die vorliegende Strukturanalyse von $[Cr(NH_3)_6]MnF_6$:

1. Die sechs Fluoratome umgeben das Mn^{3+} in einem regelmässigen Oktaeder (Punktgruppe O_h), alle sechs Mn-F Bindungen sind äquivalent.

Fig. 2. Das $FeF_{6^{3-}}$ - und $MnF_{6^{3-}}$ -Anion mit thermischen Schwingungsellipsoiden (Kugeln für die nur isotrop verfeinerten Metallatome Fe und Mn).

Fig. 3. Das Cr(NH₃)₆³⁺-Kation mit thermischen Schwingungsellipsoiden (Kugeln für die nur isotrop verfeinerten Wasserstoffatome und das Cr).

2. Der beobachtete Mn-F Bindungsabstand von 1,922 Å entspricht dem gewichteten Mittelwert der vier kurzen und zwei langen Mn-F Bindungsabstände (1,926 Å), die für K_2NaMnF_6 röntgenographisch ermittelt wurden.

3. Ein Vergleich der anisotropen Temperaturfaktoren der Fluoratome sowie deren thermische Schwingungsellipsoide in den MnF_6^{3-} und FeF_6^{3-} -Ionen (s. Fig. 2 und Tabelle 2) zeigt, dass hier signifikante Unterschiede auftreten. Für das FeF_6^{3-} -Anion ergeben sich Schwingungsellipsoide der Fluoratome, deren Hauptachsen senkrecht zur Bindungsrichtung liegen. Dagegen beobachtet man beim MnF_6^{3-} -Ion nahezu isotrope Temperaturfaktoren der Fluoratome, die Schwingungsellipsoide sind fast kugelförmig. Dies kann als eine Folge des dynamischen Jahn-Teller Effekts gedeutet werden; denn der Konfigurationswechsel der drei Gleichgewichtskonfigurationen erfolgt in Richtung der Mn-F Bindungen (Liehr, 1961).

Wasserstoff brückenbindungen

Die Infrarot-Spektren der Hexammin-Kationen in den Hexammin-metall(III)-hexafluorometallaten(III) weisen einige Besonderheiten auf (Wieghardt & Siebert, 1971*a*, *b*), die durch folgende Annahmen gedeutet wurden: Einmal müssen die NH₃-Gruppen im Gitter fixiert sein und keine freie oder gehemmte Rotation ausführen. Zum anderen müssen die M-NH₃ Tetraeder stark verzerrt sein durch Bildung mindestens einer Wasserstoffbrückenbindung zu einem benachbarten Fluoratom.

Dies konnte durch die Strukturanalyse bestätigt werden. Die NH_3 -Gruppen sind mit Sicherheit im Gitter fixiert, denn die Positionen der Wasserstoffatome waren in den dreidimensionalen Fouriersynthesen beider Strukturen klar zu erkennen.

Jede NH₃-Gruppe ist von sechs Fluoratomen umgeben. Davon haben drei einen relativ kurzen Abstand zum Stickstoff-atom der NH₃-Gruppe (s. Tabelle 3). Es stellt sich nun heraus, dass die drei H-Atome in Richtung der drei kurzen N-F Abstände gerichtet sind. In Fig. 4 ist dies für [Cr(NH₃)₆]MnF₆ dargestellt. Abgesehen von kleinen Unterschieden der Abstände und Winkel ergeben sich für [Cr(NH₃)₆]FeF₆ genau die gleichen Verhältnisse (s. Tabellen 3,4) Die kürzeste H – Brückenbindung (N-F Abstand 2,926 (4) bzw. 2,932 (2) Å) ist in beiden Strukturen annähernd linear (xN-H···F 170° bzw. 159°). Durch die Bildung dieser H-Brückenbindungen sind die Cr-NH₃ Tetraeder ziemlich stark verzerrt (s. Tabelle 4).

Die N-F Abstände in beiden Strukturen sind – verglichen mit anderen bekannten Werten – relativ lang. So werden z.B. für NH₄F und NH₄HF₂ N-F Abstände von 2,66 Å und 2,80 Å gefunden (Pauling, 1933; Rogers & Helmholz, 1940). Das ist darauf zurückzuführen, dass jedes Fluoratom von drei H-Atomen umgeben ist, und diese die Valenz des Fluoratomes absättigen.

Die Deutsche Forschungsgemeinschaft unterstüzte diese Arbeit durch eine Sachbeihilfe.

Fig.4. System der H-Brückenbindungen einer NH₃-Gruppe in [Cr(NH₃)]MnF₆

Literatur

- BALLHAUSEN, C. J. (1962). Introduction to Ligand Field Theory. New York: McGraw-Hill.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Acta Cryst. (1972). B28, 534

Beiträge zur Chemie des Schwefels. CIX.* Kristall- und Molekülstruktur von 1,2,3,4,-Tetrathiadekalin

VON F. FEHÉR, A. KLAEREN UND K.-H. LINKE

Institut für Anorganische Chemie der Universität zu Köln, Köln, Deutschland (BRD)

(Eingegangen am 15. März 1971)

The structure of 1,2,3,4-tetrathiadekalin has been determined from three-dimensional single-crystal X-ray data. The compound crystallizes in the triclinic system, space group $P\overline{1}$, with 2 molecules in the unit cell of dimensions a=9.287, b=8.606, c=6.309 Å, $\alpha=107.7$, $\beta=102.4$ and $\gamma=98.6^{\circ}$. The structure was solved by Harker-Kasper inequalities and refined by Fourier and least-squares methods. The final R value (without hydrogen atoms) was 0.129 for the 962 observed reflexions. The molecule exists in a chair-chair conformation. The sulphur atoms bound to C(1) and C(6) are *trans*-equatorial with respect to the cyclohexane ring. The small dihedral angles at the S-S bonds are noteworthy.

Einleitung

Im Rahmen der Arbeiten von Fehér und seinen Mitarbeitern auf dem Gebiet der Sulfane und Chlorsulfane sind in den letzten Jahren die Untersuchungen über die Reaktionsmöglichkeiten dieser kettenförmigen Schwefelverbindungen erweitert worden. Durch Umsetzung von Chlorsulfanen mit organischen Verbindungen, die acide Wasserstoffatome aufweisen, ist es gelungen, eine neue Klasse heterocyclischer Schwefelringe verschiedener Grösse zu synthetisieren. Ein Beispiel für eine solche Reaktion bildet die Umsetzung von *trans*-Cyclohexan-1,2-dithiol und Dichlordisulfan, die bei Anwendung des Verdünnungsprinzips in ätherischer Lösung zu dem im hiesigen Institut (Fehér & Degen, 1967) dargestellten 1,2,3,4-Tetrathiadekalin führte.

Durch eine dreidimensionale röntgenographische Feinstrukturanalyse (Fehér, Klaeren & Linke, 1970) sollten eindeutige Aussagen über die Konformation

- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- JAHN, H. A. & TELLER, E. (1937). Proc. Roy. Soc. A161, 220.
- JOHNSON, C. K. (1965). ORTEP. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- KNOX, K. (1963). Acta Cryst. 16, A45.
- KNOX, K. & MITCHELL, D. W. (1961). J. Inorg. Nucl. Chem. 21, 253.
- LIEHR, A. C. (1961). Progr. Inorg. Chem. 3, 281.
- PAULING, L. (1933). Z. Kristallogr. 85, 380.
- РЕАСОСК, R. D. (1957). J. Chem. Soc. p. 4684.
- ROGERS, M. T. & HELMHOLZ, L. (1940). J. Amer. Chem. Soc. 62, 1533.
- SCHNEIDER, S. & HOPPE, R. (1970). Z. anorg. allg. Chem. 376, 268.

TROUGHTON, P. G. H. (1971). Siemens Review. Im Druck.

WATANABE, Т., АТОЛ, М. & ОКАZAKI, С. (1950). Acta Cryst. 3, 405.

- WIEGHARDT, K. & SIEBERT, H. (1971a). Z. anorg. allg. Chem. 381, 12.
- WIEGHARDT, K. & SIEBERT, H. (1971b). J. Mol. Struc. 7, 305.

^{* 108.} Mitteilung: Fehér F., Görler, G. P., Lutz H. D. Z. anorg. allg. Chem. (1971) 382, 135.